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Assumption that N denotes a set of identical particles or identical cells, does not lead 
to any significant simplification of Eqs. (2.13). Additional conditions will however be 
imposed on the constants of interaction appearing in these equations. In this case we 

shall have a continuous medium constructed with the help of macrocells. In the long 
wave approximation this medium will be described by equations of displacement of the 
center of mass of the cell and by equations of moments of various order. Increase in the 

number of particles in a macrocell will lead to the sharpening of the spectrum of the 
initial discrete system. If the macrocell coincides with the real cell of the discrete sys- 

tem, we note that we can draw conclusions from (2.13) concerning both, the acoustic and 

optical oscillations of the system at small k only. In order to make the spectrum more 
precise, at least two cells of the initial chain must be included into the macrocell. 
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We consider the problem of weak discontinuities in quasi-linear hyperbolic systems and 
obtain transport equations for the case when the characteristic surfaces of the system 

have constant multiplicity, we also investigate weak discontinuities in magnetogasdy- 

namics for the case when the characteristic surface is adjacent to a region of rest 
Authors of cl] deal with the problem of ~o~gation of weak discontin~~es in linear 

hyperbolic systems when the unknown functions of the system and their derivatives up 



The propagation of weak discondnuities in the qstems of equations of 

magne~a~ynam~~ 
903 

to the n-th order remain continuous on the transition across the surface G, while the 

n-th order derivatives (n > 1) suffer a finite discontinuity. Transport equation for 
quasi-linear systems when the magnitude of the jump in the values of the derivatives 
on transition across the surface of discontinuity is small, is obtained in [2]. Papers [3, 
41 deal with the case of propagation of weak discontinuities for the equations of magneto- 
gasdynamics, when the surface G is adjacent to a region of rest. The problem of weak 
discontinuities in quasi-linear hyperbolic systems (n > 1) when the number of the inde- 

pendent variables is m = 2, is studied in detail in [S]. 
In the present paper we generalize the results of [S] to m 2 2 and extend the results 

obtained in [l] for the characteristic surfaces of constant rnul~plici~, to the case of 

quasi-linear systems, 

1, bet us consider an arbitrary, quasi-linear hyperbolic system of the form 

L(U)= ~A”u,+B=* fJ 

i=l 

( =$J], -u*2$ (1.1) 

Here A* are matrices with elements arki = alk* (si, V), (i = I,..., m) and B is a vec- 
tor with elements #r - B[ (si. U). 

we assume that on transition through the surface G whose equation is cp(si) ==O , func- 
tion U and its derivatives up to the n-th order are continuous, while the leading n-th 

order derivative U;g,VAo has a finite discontinuity (the subscript rp...~ denotes IZ -fold 

differentia~on) ]U,._,] = lim @I,‘.,_. - u; ..J (P+ --) P, P- -+ P, P E G) 

Here P+ and P-denote points lying on the opposite sides of the characteristic surface G. 
On introduction of new coordinates 

~3 = & (i = i,..., m - I), (P&) = Em (i= I,..., m) 

the system (1.1) becomes m-1 

.L’P(U)~AU~+ 2, AiUi+B=O (A= $l’rp( 

i=l i=l i 
(W 

where A is its characteristic matrix. The jump [U,..,, 1 satisfies the homogeneous system 

A IU LQ] = 0 
consequently, if the rank of the matrix A is equal to (n - S) then 

IU rp...rpI = &Wk 
k=l 

Here ah are arbitrary scalars and ri( are linearly independent null vectors of the char? 
acteristic matrix A(s b 1). 

Let us now differentiate (1.2) n times with respect to ‘p = 5, and perform a process 
analogous to that given in [l], ch, 5, taking into account the fact, that 

lilu (f*g+ --f-g-) = VIM + IfIg- + klf+ (P’ + P,P- - P) 
This yields the following system of ordinary equations defining ulr: 

i (aksk- + isklf ~~iAir~k + (v,,L’p (U) rk) + Aqrk + e 5, fV,Ar’) r”!) = 0 (1.3) 
k=i i=l *=I 

for n= l,and 
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for n > 1 . 

(i=l,...,s) 

rik = i3rk / aEi 

Here P’ denote linearly independent left null vectors of the characteristic matrix A, 

and ok scalars. Here and in the following a dot ( ’ ) appearing in the superscript position 
will denote differentiation with respect to a parameter along the bicharacteristic ray. 

When deriving (1.3) and (1.4),we have used a lemma concerning the bicharacteristic 
directions [l]. This lemma appears to be valid also for the quasi-linear systems, provided 
that the characteristic surfaces have constant multiplici~. 

In the linear case, the transport equation is linear and intrinsic, since its coefficients 
depend only on xi and ‘pi [l-j. This is not true for equations appearing in (I. 3) and (1.4). 
In the linear case the coefficient of ok contains U,- , while the equations appearing in 
(1.3) contain the products o,+cV and are therefore nonlinear. Systems (1.3) and (1.4) 
will yield the magnitude of the weak discontinuity only, when the value of the leading 
first order derivative is known on one of the sides of the surface. Nevertheless, these 

equations may be found useful in solving a number of applied problems, e.g. in investi- 
gating gas flows in magnetogasdynamics when the characteristic surface is adjacent to 

a region of rest, or to a region of uniform flow. 

2, We shall use Eqs. (1.3) of Sect. 1 to investigate weak discontinuities (when n = 1 f 
which may appear in an unsteady flow of a perfect plasma. Equations of motion of the 

plasma have the form [6] aH 
x=Vx(UXH), &a(pU)=I) 

~+(Uo)U--~(HG)H=---$V,~+~H”‘I, i pLr 
(2.1) 

p = apY 

Here El = (h,, h,, h3} is the vector of magnetic intensity, U z (ul, us, u,) is the 
velocity vector, p is density, p is pressure, p{ is magnetic permeability, a is a con- 
stam and y is the adiabatic index. 

Let the functions H, U and p be continuous during the transition across the surface 
G defined by Cp(Si) - t = 6, (i = 1, 2, 3) and their first derivatives undergo a finite 

discontinue, then G is a characteristic surface satisfying the equation of the character- 

istics of the system (2.1) 

We begin with the case of magnetoacoustic waves, when 

1 l”r 
-%-- cp 

$ + -. H” + ; $H,,2 = 0 

The order of the characteristic matrix of system (2.1) is equal to seven. Its rank is 
equal to six when (2.3) holds; this means that the matrix has one right and one left null 

vector , Formulas [6] 1 HJ = ( H,n -- H) 6, [U,] = c: H,H - n) 5, 
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define the jumps of the derivatives. 
From now on, let us choose the time t as the parameter along the bi~hara~terist~~ 

ray ; equations of the bicharacteristics of (2.1) become 

(2.4) 

From this it clearly follows that vi = const along the bicharacteristics and the bichar- 
acteristics themselves will become straight lines in the case of adjoining to the region 

of rest (U = 0, H = const, p = con&) . 
Inserting the appropriate values into the system (1.3), we obtain the following equa- 

tion defining CT (in this case s = 1) 

L= 

along the bicharacteristic 
= const 

R 

n=={ni}, @={O,i), CD+= r: hjcpij (i = 1, 2, 3) 
i=i 

In order to define o(t) from (2,5), we must express the coefficient accompanying u 
in terms of t. Since cps = con& and hi is constant along the bicharacteristic rays, it is 

sufficient to find Cpij = ‘pij (5) (i, j = 1, 2, 3). Equation (2.3) will be an identity with 
respect to &(1’ = 1, 2,3). Let us differentiate it twice with respect to‘Si . Taking (2.4) 

into account, we obtain the following system for qij : 
. 
‘pll = ~11~,,2 + ~~~~~~~~~~ + w@ 

'PlZ = ~~~33 + wfwh + a13tplzvp,2 + wwfb (2.6) 

vz2 = wh22 + 2a12v12v22 + wb22 

'pilEi + 'Pi2E2 + Ipi3ts= 0 (i= 1,2,3) (2.7) 

6. Fi’Ek’ p.1 
aia = $+ E.s*fP P 

--- @ = const 

where 8, k = I,2 and aik is the Kronecker delta. 

First integrals 
a12cp22 4 all%2 

= Cl, 
adh + a13912 

ad+b + wfh a12 (cp122 - (Pll(P22) = 
c2 (2.8) 

which are easily obtained for the system (2.6). enable us to reduce it to a single equa- 

tion 
@I1 uz3A + aR'iz 
-----= 
dt 2Wal? 

A = Ial8 - G~~II(~II - CIa,,)12 + Ga&hI(C1C2vII + 1) 

d. z 2C2a12”~11 -+ %3'- C2xl3%1(%1 - ClalS) 

which, in turn, yields 

2k {C,k [2cr19~---13(%1- c,0r3)j - 2ft 4 C&t a13fuai3 - WI) 

(&1= 4 (t + C3)3 (alla13 - alzz)z - G2k2 f(sli - CPla)2 + h2+-Gf 

kz-;c~H,~- + 

The remaining cpij(t) are obtained from (2.7) and (2.8). Substituting rp+j (t) into(U), 
we finally obtain the transport equation for the system (2.1) 
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(2.9) 

which agrees with the gas dynamical transport equation [4] with accuracy to the constant 
rerms. 

From (2.9) we obtain o = 

Here M, C and C, are arbitrary constants and T = L / k, i. e, the law of variation of 
o(t) along the bicharacteristics coincide with that appearing in the standard gas dynamics 
141. When 

; ?&a-i =o (2.iO) 

and if we assume that H and n are not parallel, then the characteristic matrix again has 
one right and one left null vector and the jumps in the values of the derivatives are given 

bY [H,]=H,(p2(Hxn)a, [U,j=cp,(Hxn)e, Ip,] =O (2.11) 

On substituting the relevant quantities into (1.3) we find, that the coefficients of CI 
and a2 are equal to zero and the transport equation becomes a = 0, i.e. u = coast along 
a bicharacteristic. Weak discontinuities which have occurred at the initial instant retain 

their constant intensity. 

Note. If the characteristic surfaces have constant multiplicity [l]. weak discontinu- 
ities propagate along the bicharacteristic rays. However, when the characteristic surfaces 
have variable multipHci~ [l], no general theory exists for either the linear or the quasi- 

Iinear systems, ~vestigation of the weak discont~uities in magnetogasdynamics, shows 

that for variable multiplicity of the characteristic surfaces in some cases (e, g. when (2.10) 

holds, H is parallel to n, 42~~ = (PI / p)hgf, ), a system of ordinary equations defining 

ok(t) is unobtainable. In other cases weak discontinuities propagate along the bicharac- 

teristics ; in particular if (2.10) holds. H is parallel to n and c‘$i #(PI I p)hiHn, the 
jumps are given by 

-‘p~“i (i I= 2, 3, 

and or(t) and o%(t) can be found from the system a, = 0, cr2 = 0, i.e. in this case weak 
discont~uities retain constant intensity. 
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